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ABSTRACT 

Every reflexive Banach space with unconditional basis is isomorphic to a 
complemented subspace of a reflexive Banach space with symmetric basis. 

In this note we prove the theorem stated in the abstract. It is an improvement on 

a recent result of Lindenstrauss [4] who proved that every space with unconditional 

basis is isomorphic to a complemented subspace of a space with symmetric basis. 

It will be more convenient for us to speak about sequence spaces rather than 

about spaces with unconditional bases. 

DEFINmON. Let Z be the set of all real-valued sequences. A function 

a: Z -~ (0, oo) will be called a u-norm (u from "unconditional") if 

(A1) a(~f,)__< ~ a(fn), a(tf) = [ t l a ( f  ) for t e g  

(A2) if a(fz) < oo and f ,  ~ 0 (pointwise) then a(f,)J, 0 

(A3) a(e,) > 0 where en(m) = 5,,m 

(A4) a(f) = a(Ifl ). 

The sequence space Z~ will now be defined as the set 

Z, = { f ~ Z  : a ( f )  < oo} 

equipped with the norm a. 

Z, (or a) will be called symmetric if 

(A5) a(f) = a ( fo  ~) for any permutation rc of natural numbers. 
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O f  course, sequence spaces are nothing but spaces with unconditional bases; 

symmetric sequence spaces are nothing but spaces with symmetric bases. 

THEOREM. For every sequence space Zr there exists a symmetric sequence 

space X~ = Zll I1~ such that Ze is isomorphic to a complemented subspace of Xr 

Moreover, reflexivity of Zr implies reflexivity of Xr 

We are going to construct the norm II II, in the following way: 

Let (a,) be a sequence of  symmetric u-norms on Z. For every f e  Z we define 

AfE Z by the formula 

Af(n) = a,(f) 

(note that A: Z --) is nonlinear l). 

Now, given any norm ~ we put 

[If lie = ~(Af) for f e  Z. 

It is easy to see that 11 II, is a symmetric norm. 

We shall need the following two trivial lemmas. The second one is well known 

(cf., e.g., [3, p. 118, Lemma 4]). From now on, we assume for the sake of  con- 

venience that 

~(e,) = 1 for n = 1, 2, ... 

LEMMA 1. Let fx,f2, '" eZ  as well as Fx, F2,... eZ  have mutually disjoint 

supports. Suppose that 

(1) ~(F 3 > 1 and F~ -< Af~for i= 1,2,... 

(2) ~. ~(Aft-  F,) < K. 

Then (fi) regarded as a sequence in Xr is equivalent to (F~) regarded as c 

sequence in Zr precisely 

(3) ~( Y~ a,F,) < II ]~ a,f, llr (K + 1)~( Y~ a,F,) 

for every sequence (a~). 

PROOF. Since both norms in (3) satisfy (A4), and (f~) as well as (F~) have mutual- 

ly disjoint supports, it is enough to assume that a~ >__ 0, i = 1,2, .-. 

Denote by i(n) the index such that n E supp Fi(.) (we put i(n) = 1 if n ~ U suppF~). 

We have for every n 

a,( ~, atf~) < Z a~,(f~) = ( Z a,F~)(n) + ( ]~ ai(Af~- F~))(n) 

a,( Z a.ff~) ~ ~,(a~(,)f~(,)) ~ a~t,)Fi(,)(n ) = ( Z alFt)(n). 
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Put F = A( 2~ a.,fi), G = ~ air  i and H = ]~ a~(Afi - Fi). The above inequal- 

ities may be written as follows 

G(n) < F(n) < G(n) + H(n) for all n. 

Thus, since I[ 2~ aifi [1r = 4(t)  and since 4 is monotonic, we have 

4( ~ a,F,) < 11 ~' aif~ I1~ < 4( ~, afFf) + 4(H). 

By (1) and (2), 

4(H) < KmaxJa~[ <= K4( X aiFi) 

which proves (3). 

LEMMA 2. I f  El, E2,"" are mutually disjoint, then for  every symmetric 

norm ~, the space, span (le.), is a complemented subspace of  Z~ (le denotes the 

indicator function of E). 

Our construction will be based on the following 

PROPOSITION. 

(a) I f  the norms ~n = max1~i=<n 0q are reflexive (i.e. Z~, are reflexive) and 

Zr is reflexive, then Xr = Zll 11r is reflexive. 

(b) I f  there exists a sequence (fi) c X ,  of  elements with mutually disjoint 

supports such that 

(4) eq(f,) = 1 

(5) X aj(fi) < 2- i  

then the formula 

I(a) = Y~ adfi for  a = (ai) ~ Zr 

defines an isomorphic embedding I: Zr ~ Xr 

(c) if, in addition, the above f ,  are of the form 

fi(n) = t xl i f  k i_1 < n <- k i 
t 0 otherwise, 

then I(Zr is a complemented subspace of X ~. 

PROOf. In (b) we have Aft = (aJ(f*))7= 1. Take F~ = ev Then (1) and (2) in 

lemma 1 are clearly satisfied and thus 

r < [l I(a)11, =< 2r 
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Since I(Zr = span (fi), (c) follows from Lemma 2. 

To prove reflexivity of  Xr it is enough (cf. [1, p. 76, Th. 4)] to show that if 

(zi) c Xe have disjoint supports, then (zi) is not equivalent to the unit vector basis 

in either ll or Co. Assume to the contrary that a sequence (zi) c Xr (with disjoint 

supports) is equivalent to the unit vector basis in either 11 or c o . 

Denote D K = span (Zi)i~K+ 1 (of course for every K, D K is isomorphic to either 

I l or c o and hence is nonreflexive). We consider two cases: 

Case 1. The following condition is satisfied 

(*) VKV.V~>o 3u~DK such that 

~i( u ) < e l l u l l r  for i = l , . . . , n .  

This enables us to construct sequences (#i), (Gi) c Z so that 

(**) {(Gi) > 1; G i < A 9  i and { ( A # i -  G i ) < 2  -i for i = 1,2,... 

(***) #i are disjoint blocks of  (zj), i.e. 

n i+ l  

gi = Y~ ajzj for some (a j) and n 1 < n2 < "" 
j = n ~ + l  

Of course (**) and Lemma 1 imply that the space, span(gi), is isomorphic to a 
subspace of  Zr and hence is reflexive, while (***) implies that span(g/) is iso- 
morphic to either c o or 11 and hence is not reflexive, a contradiction. 

We find (gi), (Gi) by an easy induction. Suppose that gl, "",gq-1 and also 

Gx, ...,G~_I, with mutually disjoint finite supports, are already constructed so 

that (**) and (***) are fulfilled for i = 1, ..., q - 1. 

Let m be an integer such that the interval (1, m)  contains supports of  

G1, G2, "", Gq-1. By (*), there exists u e D, such that [I u He = 2 and 

a,(u) < 2 -q - l -  m - '  for i = 1, . . . ,m. 

Obviously we may assume that u is a block of  (zj). Also, since u E Xr there 

exists a number p such that 

r < 2 -~- 1 where U = (,.~_0,_~,%+ l(u), %+2(u),...). 

p times 

Now, take 

aq = u, Gq -- ~ , a m + I ( U ) , ' " , % ( u ) , O , O , ' " ) .  

m times 
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We have 
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~(Aoq-  Gq) < ~ ~i(u) + ~(U) < 2 -~. 
i = 1  
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Thus (**) holds. This proves that Case 1 is impossible. 

Case 2. Condition (*) is not satisfied. Then there exist K, n, e > 0 such that 

for every u ~ Dr we have 

V,(u) = max ~(u) >__8 [] u lie" 

On the other hand, we always have 

= [I u 

and therefore on Dr, the norms y, and l[ ll~ are equivalent. However, the first is 

reflexive while the second is not, a contradiction. 

This proves the proposition. 

It now remains to construct norms (~i) and a sequence (f~)c Z so that the 

assumptions in (a), (b), (c) are satisfied. To have (a) satisfied, ~i will be Orlicz 

sequence norms (for a definition, see [2]) each of them equivalent to l 2 n o r m .  

We shall need the following trivial 

LEMMA. 3. For every t > 0 and every K > 1 there exist an Orlicz function 

M and numbers s,x, 0 < s < x < t, such that 

(6) K-lyZ  ~ M(y) <= Ky 2 for O <= y < oo 

M ( y ) = K - l y 2  for y>=t and y<_s 

(7) M(x) = Kx z. 

PROOf. Let P' ,  P" be the half-parabolas {(y, K -  ly2) : y >= 0}, {(y, Ky 2) : y >__ 0} 

respectively. 

Let L be the straight line tangent to P", passing through ( t ,K - l t  z) ~ P', that 

touches P" at the left from (t,K-lt2), i.e., L C3P" = {(x, Kx2)} with x < t. Of  

course L intersects P '  in one more point, say (s,K-ls2). Certainly 0 < s < x < t. 

Now, the diagram of  M coincides with P '  for y >= t and y < s and it coincides 

with L for s < y = t. Clearly M satisfies (6) and (7). 

The norms a, will be determined by Orlicz functions Mi; these functions will 

be constructed as in Lemma 3. In (c) denote m, = k , -  k~_ r Suppose that M,, 
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and corresponding numbers Ks, t ,  x/, si and rn,  are already defined for  i = 1, ..., n. 

We assume also that  

(8) 1 = t  l > x l > s l > t 2 > x 2 > . . .  > s ,  

1 < K ,  < K 2 < . . .  < K ,  

m 1 < m 2 < m 3 < . . .  < r n  n 

(9) 2~ ~j(f/) < 2 - /  for  i = 1, . . . ,  n 
j~ij~_n 

(10) ~i(f~) = 1 for  i = 1, ..., n. 

Put  N = (inf/~, (2- i  _ • ~j(fi)))- 1 and put  e = n"  2 n + 1. 
j~i,j~_n 

Let K .+ I  > m a x ( m . .  N2,p2,K.)  and let t.+ 1 < p - 1 .  s.  be such that  

2 
Mn+l(Xn+l )  = K.+lXn+ 1 

is a number  o f  the form mn-+ll where m,+ i  is an integer. We can do so, since x 

in Lemma 3 depends continuously on t and tends to 0 together with t. 

We have for  i = 1, ..., n 

Mn+I(NXi )  < M n + I ( N )  = K~+tl �9 N 2 < m~ 1 < m[  1, 

hence mlM,+l(NX 3 < 1 and this means that  

~.+l(f / )  < N - I  -< 2 - i -  X ~/(f/) 
j~i,j~_n 

and hence 

(9)' Z O~j(fi ) < 2 - i  . 
j~l,j~_n+l 

T a k e j  = 1, ..., n. Since x,+ 1 < t,+1, we have Px,+ 1 < s, and hence 

M j ( P X n + l  ) - - - 1 ~ 2  2 2 2 2 P Xn+l < Kn+iXn+l l(Xn+l). = lk j  .1" Xn+ 1 ~ = M,+ 

Hence 

mn+lMl(PXn+l) < mn+lM,+t(x,+i) = ~,+l(f~+i)  = 1 

for  j = 1, ..., n. 

and this means that  

~ j (L+I)  < p - 1  = n - 1 . 2 - , - 1  

Hence 

(9)" s ~ / f~+ l )  = s 0~j(f~+1) < 2 -("+1) 
j~n+ 1,j~_n+l j~_n 
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Thus condition (9) is satisfied if we replace n by n + 1; clearly, (10) is also satisfied 
for i = n + 1. In this way ,we get that (9) and (10) are valid for all i and therefore 

(4) and (5) are satisfied. 

REMARK. The main interest in our construction, as in Lindenstrauss' con- 

struction, stems from the fact that apparently special and regular spaces, namely 

reflexive spaces with symmetric bases, fail to have some natural properties. For 

example, they need not be, as was conjectured, uniformly convexifiable. 

Another fact that may be of  interest follows from our theorem. We deduce 

that Lp spaces for 1 < p < oo (or more generally reflexive separable Orlicz function 

spaces) can be embedded into reflexive spaces with symmetric bases. This contrasts 

with a recent result of  Lindenstrauss and Tzafriri [5, Th. 3] who proved that, 

unless p = 2, the latter spaces cannot be replaced by Orlicz sequence spaces. 
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